GOOGLE ADS

Srinivasa Ramanujan

Srinivasa Ramanujan

Srinivasa Ramanujan
Srinivasa Ramanujan Iyengar FRS (22 December 1887 – 26 April 1920) was an Indian mathematician and autodidact. Though he had almost no formal training in pure mathematics, made extraordinary contributions to mathematical analysis, number theory, infinite series, and continued fractions. Ramanujan initially developed his own mathematical research in isolation; it was quickly recognized by Indian mathematicians. When his skills became apparent to the wider mathematical community, centred in Europe at the time, he began a famous partnership with the English mathematician G. H. Hardy. He rediscovered previously known theorems in addition to producing new theorems.

During his short life, Ramanujan independently compiled nearly 3,900 results (mostly identities and equations).Nearly all his claims have now been proven correct, although some were already known.He stated results that were both original and highly unconventional, such as the Ramanujan prime and the Ramanujan theta function, and these have inspired a vast amount of further research.The Ramanujan Journal, an international publication, was launched to publish work in all areas of mathematics influenced by his work.

Ramanujan's home on Sarangapani Street, Kumbakonam
Ramanujan was born on 22 December 1887 in Erode, Madras Presidency (now Pallipalayam, Erode, Tamil Nadu), at the residence of his maternal grandparents in a Brahmin family.His father, K. Srinivasa Iyengar, worked as a clerk in a sari shop and hailed from the district of Thanjavur.His mother, Komalatammal, was a housewife and also sang at a local temple.They lived in Sarangapani Street in a traditional home in the town of Kumbakonam. The family home is now a museum. When Ramanujan was a year and a half old, his mother gave birth to a son named Sadagopan, who died less than three months later. In December 1889, Ramanujan had smallpox and recovered, unlike thousands in the Thanjavur District who died from the disease that year.He moved with his mother to her parents' house in Kanchipuram, near Madras (now Chennai). In November 1891, and again in 1894, his mother gave birth to two children, but both children died in infancy.

On 1 October 1892, Ramanujan was enrolled at the local school.In March 1894, he was moved to a Tamil medium school. After his maternal grandfather lost his job as a court official in Kanchipuram,Ramanujan and his mother moved back to Kumbakonam and he was enrolled in the Kangayan Primary School.When his paternal grandfather died, he was sent back to his maternal grandparents, who were then living in Madras. He did not like school in Madras, and he tried to avoid attending. His family enlisted a local constable to make sure he attended school. Within six months, Ramanujan was back in Kumbakonam.

Since Ramanujan's father was at work most of the day, his mother took care of him as a child. He had a close relationship with her. From her, he learned about tradition and puranas. He learned to sing religious songs, to attend pujas at the temple, and to keep particular eating habits – all of which are part of Brahmin culture.At the Kangayan Primary School, Ramanujan performed well. Just before the age of 10, in November 1897, he passed his primary examinations in English, Tamil, geography and arithmetic. With his scores, he stood first in the district.That year, Ramanujan entered Town Higher Secondary School where he encountered formal mathematics for the first time.

By age 11, he had exhausted the mathematical knowledge of two college students who were lodgers at his home. He was later lent a book on advanced trigonometry written by S. L. Loney.He completely mastered this book by the age of 13 and discovered sophisticated theorems on his own. By 14, he was receiving merit certificates and academic awards which continued throughout his school career and also assisted the school in the logistics of assigning its 1200 students (each with their own needs) to its 35-odd teachers.He completed mathematical exams in half the allotted time, and showed a familiarity with geometry and infinite series. Ramanujan was shown how to solve cubic equations in 1902 and he went on to find his own method to solve the quartic. The following year, not knowing that the quintic could not be solved by radicals, he tried to solve the quintic.

In 1903 when he was 16, Ramanujan obtained from a friend a library-loaned copy of a book by G. S. Carr.The book was titled A Synopsis of Elementary Results in Pure and Applied Mathematics and was a collection of 5000 theorems. Ramanujan reportedly studied the contents of the book in detail.The book is generally acknowledged as a key element in awakening the genius of Ramanujan.The next year, he had independently developed and investigated the Bernoulli numbers and had calculated the Euler–Mascheroni constant up to 15 decimal places.His peers at the time commented that they "rarely understood him" and "stood in respectful awe" of him.

When he graduated from Town Higher Secondary School in 1904, Ramanujan was awarded the K. Ranganatha Rao prize for mathematics by the school's headmaster, Krishnaswami Iyer. Iyer introduced Ramanujan as an outstanding student who deserved scores higher than the maximum possible marks.He received a scholarship to study at Government Arts College, Kumbakonam,However, Ramanujan was so intent on studying mathematics that he could not focus on any other subjects and failed most of them, losing his scholarship in the process.In August 1905, he ran away from home, heading towards Visakhapatnam and stayed in Rajahmundryfor about a month.He later enrolled at Pachaiyappa's College in Madras. He again excelled in mathematics but performed poorly in other subjects such as physiology. Ramanujan failed his Fellow of Arts exam in December 1906 and again a year later. Without a degree, he left college and continued to pursue independent research in mathematics. At this point in his life, he lived in extreme poverty and was often on the brink of starvation.

Life in England
Ramanujan (centre) with other scientists at Trinity College
Whewell's Court, Trinity College, Cambridge
Ramanujan boarded the S.S. Nevasa on 17 March 1914, and at 10 o'clock in the morning, the ship departed from Madras.He arrived in London on 14 April, with E. H. Neville waiting for him with a car. Four days later, Neville took him to his house on Chesterton Road in Cambridge. Ramanujan immediately began his work with Littlewood and Hardy. After six weeks, Ramanujan moved out of Neville's house and took up residence on Whewell's Court, just a five-minute walk from Hardy's room.Hardy and Littlewood began to take a look at Ramanujan's notebooks. Hardy had already received 120 theorems from Ramanujan in the first two letters, but there were many more results and theorems to be found in the notebooks. Hardy saw that some were wrong, others had already been discovered, while the rest were new breakthroughs.Ramanujan left a deep impression on Hardy and Littlewood. Littlewood commented, "I can believe that he's at least a Jacobi",while Hardy said he "can compare him only with Euler or Jacobi."

Ramanujan spent nearly five years in Cambridge collaborating with Hardy and Littlewood and published a part of his findings there. Hardy and Ramanujan had highly contrasting personalities. Their collaboration was a clash of different cultures, beliefs and working styles. Hardy was an atheist and an apostle of proof and mathematical rigour, whereas Ramanujan was a deeply religious man and relied very strongly on his intuition. While in England, Hardy tried his best to fill the gaps in Ramanujan's education without interrupting his spell of inspiration.

Ramanujan was awarded a Bachelor of Science degree by research (this degree was later renamed PhD) in March 1916 for his work on highly composite numbers, the first part of which was published as a paper in the Proceedings of the London Mathematical Society. The paper was over 50 pages with different properties of such numbers proven. Hardy remarked that this was one of the most unusual papers seen in mathematical research at that time and that Ramanujan showed extraordinary ingenuity in handling it.On 6 December 1917, he was elected to the London Mathematical Society. He became a Fellow of the Royal Society in 1918, becoming the second Indian to do so, following Ardaseer Cursetjee in 1841, and at age 31 he was one of the youngest Fellows in the history of the Royal Society. He was elected "for his investigation in Elliptic functions and the Theory of Numbers." On 13 October 1918, he became the first Indian to be elected a Fellow of Trinity College, Cambridge.

Illness and death
Ramanujan was plagued by health problems throughout his life. Now he was living in a country far away from home, and obsessively involved with his mathematics. His health worsened in England, perhaps exacerbated by stress and by the scarcity of vegetarian food during the First World War. He was diagnosed with tuberculosis and a severe vitamin deficiency and was confined to a sanatorium.

Ramanujan returned to Kumbakonam, Madras Presidency in 1919 and died soon thereafter at the age of 32 in 1920. His widow, S. Janaki Ammal, moved to Mumbai, but returned to Chennai (formerly Madras) in 1950, where she lived until her death at age 95 in 1994.

A 1994 analysis of Ramanujan's medical records and symptoms by Dr. D.A.B. Young concluded that it was much more likely he had hepatic amoebiasis, a parasitic infection of the liver widespread in Madras, where Ramanujan had spent time. He had two episodes of dysentery before he left India. When not properly treated, dysentery can lie dormant for years and lead to hepatic amoebiasis,a difficult disease to diagnose, but once diagnosed readily cured.

Personality and spiritual life
Ramanujan has been described as a person with a somewhat shy and quiet disposition, a dignified man with pleasant manners.He lived a rather spartan life while at Cambridge. Ramanujan's first Indian biographers describe him as rigorously orthodox. Ramanujan credited his acumen to his family goddess, Mahalakshmi of Namakkal. He looked to her for inspiration in his work,and claimed to dream of blood drops that symbolised her male consort, Narasimha, after which he would receive visions of scrolls of complex mathematical content unfolding before his eyes.He often said, "An equation for me has no meaning, unless it represents a thought of God."

Hardy cites Ramanujan as remarking that all religions seemed equally true to him.Hardy further argued that Ramanujan's religiousness had been romanticised by Westerners and overstated—in reference to his belief, not practice—by Indian biographers. At the same time, he remarked on Ramanujan's strict observance of vegetarianism.

Mathematical achievements
In mathematics, there is a distinction between having an insight and having a proof. Ramanujan's talent suggested a plethora of formulae that could then be investigated in depth later. It is said by G. H. Hardy that Ramanujan's discoveries are unusually rich and that there is often more to them than initially meets the eye. As a by-product, new directions of research were opened up. Examples of the most interesting of these formulae include the intriguing infinite series for p, one of which is given below
Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment

0 comments:

Post a Comment

Twitter Updates

Get In Touch

Flickr Photostream