GOOGLE ADS

Niels Bohr

Niels Bohr

Niels Bohr
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research.

Bohr developed the Bohr model of the atom, in which he proposed that energy levels of electrons are discrete and that the electrons revolve in stable orbits around the atomic nucleus but can jump from one energy level (or orbit) to another. Although the Bohr model has been supplanted by other models, its underlying principles remain valid. He conceived the principle of complementarity: that items could be separately analysed in terms of contradictory properties, like behaving as a wave or a stream of particles. The notion of complementarity dominated Bohr's thinking in both science and philosophy.

Bohr founded the Institute of Theoretical Physics at the University of Copenhagen, now known as the Niels Bohr Institute, which opened in 1920. Bohr mentored and collaborated with physicists including Hans Kramers, Oskar Klein, George de Hevesy and Werner Heisenberg. He predicted the existence of a new zirconium-like element, which was named hafnium, after the Latin name for Copenhagen, where it was discovered. Later, the element bohrium was named after him.

During the 1930s, Bohr helped refugees from Nazism. After Denmark was occupied by the Germans, he had a famous meeting with Heisenberg, who had become the head of the German nuclear energy project. In September 1943, word reached Bohr that he was about to be arrested by the Germans, and he fled to Sweden. From there, he was flown to Britain, where he joined the British Tube Alloys nuclear weapons project, and was part of the British mission to the Manhattan Project. After the war, Bohr called for international cooperation on nuclear energy. He was involved with the establishment of CERN and the Research Establishment Risø of the Danish Atomic Energy Commission, and became the first chairman of the Nordic Institute for Theoretical Physics in 1957.

Early years
Niels Bohr was born in Copenhagen, Denmark, on 7 October 1885, the second of three children of Christian Bohr,a professor of physiology at the University of Copenhagen, and Ellen Adler Bohr, who came from a wealthy Danish Jewish family prominent in banking and parliamentary circles.He had an elder sister, Jenny, and a younger brother Harald.Jenny became a teacher,while Harald became a mathematician and Olympic footballer who played for the Danish national team at the 1908 Summer Olympics in London. Niels was a passionate footballer as well, and the two brothers played several matches for the Copenhagen-based Akademisk Boldklub (Academic Football Club), with Niels as goalkeeper.

Head and shoulders of young man in a suit and tie
Niels Bohr as a young man
Bohr was educated at Gammelholm Latin School, starting when he was seven.In 1903, Bohr enrolled as an undergraduate at Copenhagen University. His major was physics, which he studied under Professor Christian Christiansen, the university's only professor of physics at that time. He also studied astronomy and mathematics under Professor Thorvald Thiele, and philosophy under Professor Harald Høffding, a friend of his father.

In 1905, a gold medal competition was sponsored by the Royal Danish Academy of Sciences and Letters to investigate a method for measuring the surface tension of liquids that had been proposed by Lord Rayleigh in 1879. This involved measuring the frequency of oscillation of the radius of a water jet. Bohr conducted a series of experiments using his father's laboratory in the university; the university itself had no physics laboratory. To complete his experiments, he had to make his own glassware, creating test tubes with the required elliptical cross-sections. He went beyond the original task, incorporating improvements into both Rayleigh's theory and his method, by taking into account the viscosity of the water, and by working with finite amplitudes instead of just infinitesimal ones. His essay, which he submitted at the last minute, won the prize. He later submitted an improved version of the paper to the Royal Society in London for publication in the Philosophical Transactions of the Royal Society.

Harald became the first of the two Bohr brothers to earn a master's degree, which he earned for mathematics in April 1909. Niels took another nine months to earn his. Students had to submit a thesis on a subject assigned by their supervisor. Bohr's supervisor was Christiansen, and the topic he chose was the electron theory of metals. Bohr subsequently elaborated his master's thesis into his much-larger Doctor of Philosophy (dr. phil.) thesis. He surveyed the literature on the subject, settling on a model postulated by Paul Drude and elaborated by Hendrik Lorentz, in which the electrons in a metal are considered to behave like a gas. Bohr extended Lorentz's model, but was still unable to account for phenomena like the Hall effect, and concluded that electron theory could not fully explain the magnetic properties of metals. The thesis was accepted in April 1911, and Bohr conducted his formal defence on 13 May. Harald had received his doctorate the previous year.Bohr's thesis was groundbreaking, but attracted little interest outside Scandinavia because it was written in Danish, a Copenhagen University requirement at the time. In 1921, the Dutch physicist Hendrika Johanna van Leeuwen would independently derive a theorem from Bohr's thesis that is today known as the Bohr–van Leeuwen theorem.

A young man in a suit and tie and a young woman in a light coloured dress sit on a stoop, holding hands
Niels Bohr and Margrethe Nørlund on their engagement in 1910.
In 1910, Bohr met Margrethe Nørlund, the sister of the mathematician Niels Erik Nørlund.Bohr resigned his membership in the Church of Denmark on 16 April 1912, and he and Margrethe were married in a civil ceremony at the town hall in Slagelse on 1 August. Years later, his brother Harald similarly left the church before getting married.Niels and Margrethe had six sons.The oldest, Christian, died in a boating accident in 1934,and another, Harald, died from childhood meningitis.Aage Bohr became a successful physicist, and in 1975 was awarded the Nobel Prize in physics, like his father. Hans (da) became a physician; Erik (da), a chemical engineer; and Ernest, a lawyer.Like his uncle Harald, Ernest Bohr became an Olympic athlete, playing field hockey for Denmark at the 1948 Summer Olympics in London.

Physics
In 1911, Bohr travelled to England. At the time, it was where most of the theoretical work on the structure of atoms and molecules was being done.He met J. J. Thomson of the Cavendish Laboratory and Trinity College, Cambridge. He attended lectures on electromagnetism given by James Jeans and Joseph Larmor, and did some research on cathode rays, but failed to impress Thomson.He had more success with younger physicists like the Australian William Lawrence Bragg,and New Zealand's Ernest Rutherford, whose 1911 Rutherford model of the atom had challenged Thomson's 1904 plum pudding model.Bohr received an invitation from Rutherford to conduct post-doctoral work at Victoria University of Manchester,where Bohr met George de Hevesy and Charles Galton Darwin (whom Bohr referred to as "the grandson of the real Darwin").

Bohr returned to Denmark in July 1912 for his wedding, and travelled around England and Scotland on his honeymoon. On his return, he became a privatdocent at the University of Copenhagen, giving lectures on thermodynamics. Martin Knudsen put Bohr's name forward for a docent, which was approved in July 1913, and Bohr then began teaching medical students.His three papers, which later became famous as "the trilogy",were published in Philosophical Magazine in July, September and November of that year.He adapted Rutherford's nuclear structure to Max Planck's quantum theory and so created his Bohr model of the atom.

Planetary models of atoms were not new, but Bohr's treatment was.Taking the 1912 paper by Darwin on the role of electrons in the interaction of alpha particles with a nucleus as his starting point,he advanced the theory of electrons travelling in orbits around the atom's nucleus, with the chemical properties of each element being largely determined by the number of electrons in the outer orbits of its atoms.He introduced the idea that an electron could drop from a higher-energy orbit to a lower one, in the process emitting a quantum of discrete energy. This became a basis for what is now known as the old quantum theory.

Diagram showing electrons with circular orbits around the nucleus labelled n=1, 2 and 3. An electron drops from 3 to 2, producing radiation delta E = hv
The Bohr model of the hydrogen atom. A negatively charged electron, confined to an atomic orbital, orbits a small, positively charged nucleus; a quantum jump between orbits is accompanied by an emitted or absorbed amount of electromagnetic radiation.

The model's first hurdle was the Pickering series, lines which did not fit Balmer's formula. When challenged on this by Alfred Fowler, Bohr replied that they were caused by ionised helium, helium atoms with only one electron. The Bohr model was found to work for such ions.Many older physicists, like Thomson, Rayleigh and Hendrik Lorentz, did not like the trilogy, but the younger generation, including Rutherford, David Hilbert, Albert Einstein, Enrico Fermi, Max Born and Arnold Sommerfeld saw it as a breakthrough.The trilogy's acceptance was entirely due to its ability to explain phenomena which stymied other models, and to predict results that were subsequently verified by experiments.Today, the Bohr model of the atom has been superseded, but is still the best known model of the atom, as it often appears in high school physics and chemistry texts.

Bohr did not enjoy teaching medical students. He decided to return to Manchester, where Rutherford had offered him a job as a reader in place of Darwin, whose tenure had expired. Bohr accepted. He took a leave of absence from the University of Copenhagen, which he started by taking a holiday in Tyrol with his brother Harald and aunt Hanna Adler. There, he visited the University of Göttingen and the Ludwig Maximilian University of Munich, where he met Sommerfeld and conducted seminars on the trilogy. The First World War broke out while they were in Tyrol, greatly complicating the trip back to Denmark and Bohr's subsequent voyage with Margrethe to England, where he arrived in October 1914. They stayed until July 1916, by which time he had been appointed to the Chair of Theoretical Physics at the University of Copenhagen, a position created especially for him. His docentship was abolished at the same time, so he still had to teach physics to medical students. New professors were formally introduced to King Christian X, who expressed his delight at meeting such a famous football player.

Quantum mechanics
The introduction of spin by George Uhlenbeck and Samuel Goudsmit in November 1925 was a milestone. The next month, Bohr travelled to Leiden to attend celebrations of the 50th anniversary of Hendrick Lorentz receiving his doctorate. When his train stopped in Hamburg, he was met by Wolfgang Pauli and Otto Stern, who asked for his opinion of the spin theory. Bohr pointed out that he had concerns about the interaction between electrons and magnetic fields. When he arrived in Leiden, Paul Ehrenfest and Albert Einstein informed Bohr that Einstein had resolved this problem using relativity. Bohr then had Uhlenbeck and Goudsmit incorporate this into their paper. Thus, when he met Werner Heisenberg and Pascual Jordan in Göttingen on the way back, he had become, in his own words, "a prophet of the electron magnet gospel".



1927 Solvay Conference in Brussels, October 1927. Bohr is on the right in the middle row, next to Max Born.
Heisenberg first came to Copenhagen in 1924, then returned to Göttingen in June 1925, shortly thereafter developing the mathematical foundations of quantum mechanics. When he showed his results to Max Born in Göttingen, Born realised that they could best be expressed using matrices. This work attracted the attention of the British physicist Paul Dirac,who came to Copenhagen for six months in September 1926. Austrian physicist Erwin Schrödinger also visited in 1926. His attempt at explaining quantum physics in classical terms using wave mechanics impressed Bohr, who believed it contributed "so much to mathematical clarity and simplicity that it represents a gigantic advance over all previous forms of quantum mechanics".

When Kramers left the Institute in 1926 to take up a chair as professor of theoretical physics at the Utrecht University, Bohr arranged for Heisenberg to return and take Kramers's place as a lektor at the University of Copenhagen.Heisenberg worked in Copenhagen as a university lecturer and assistant to Bohr from 1926 to 1927,

Bohr became convinced that light behaved like both waves and particles, and in 1927, experiments confirmed the de Broglie hypothesis that matter (like electrons) also behaved like waves.He conceived the philosophical principle of complementarity: that items could have apparently mutually exclusive properties, such as being a wave or a stream of particles, depending on the experimental framework.He felt that it was not fully understood by professional philosophers.

In Copenhagen in 1927 Heisenberg developed his uncertainty principle,which Bohr embraced. In a paper he presented at the Volta Conference at Como in September 1927, he demonstrated that the uncertainty principle could be derived from classical arguments, without quantum terminology or matrices.Einstein preferred the determinism of classical physics over the probabilistic new quantum physics to which he himself had contributed. Philosophical issues that arose from the novel aspects of quantum mechanics became widely celebrated subjects of discussion. Einstein and Bohr had good-natured arguments over such issues throughout their lives.

In 1914, Carl Jacobsen, the heir to Carlsberg breweries, bequeathed his mansion to be used for life by the Dane who had made the most prominent contribution to science, literature or the arts, as an honorary residence (Danish: Æresbolig). Harald Høffding had been the first occupant, and upon his death in July 1931, the Royal Danish Academy of Sciences and Letters gave Bohr occupancy. He and his family moved there in 1932.He was elected president of the Academy on 17 March 1939.

By 1929, the phenomenon of beta decay prompted Bohr to again suggest that the law of conservation of energy be abandoned, but Enrico Fermi's hypothetical neutrino and the subsequent 1932 discovery of the neutron provided another explanation. This prompted Bohr to create a new theory of the compound nucleus in 1936, which explained how neutrons could be captured by the nucleus. In this model, the nucleus could be deformed like a drop of liquid. He worked on this with a new collaborator, the Danish physicist Fritz Kalckar, who died suddenly in 1938.

The discovery of nuclear fission by Otto Hahn in December 1938 (and its theoretical explanation by Lise Meitner) generated intense interest among physicists. Bohr brought the news to the United States where he opened the Fifth Washington Conference on Theoretical Physics with Fermi on 26 January 1939.When Bohr told George Placzek that this resolved all the mysteries of transuranic elements, Placzek told him that one remained: the neutron capture energies of uranium did not match those of its decay. Bohr thought about it for a few minutes and then announced to Placzek, Léon Rosenfeld and John Wheeler that "I have understood everything."Based on his liquid drop model of the nucleus, Bohr concluded that it was the uranium-235 isotope and not the more abundant uranium-238 that was primarily responsible for fission with thermal neutrons. In April 1940, John R. Dunning demonstrated that Bohr was correct.In the meantime, Bohr and Wheeler developed a theoretical treatment which they published in a September 1939 paper on "The Mechanism of Nuclear Fission".

Philosophy
Bohr read the 19th-century Danish Christian existentialist philosopher, Søren Kierkegaard. Richard Rhodes argued in The Making of the Atomic Bomb that Bohr was influenced by Kierkegaard through Høffding.In 1909, Bohr sent his brother Kierkegaard's Stages on Life's Way as a birthday gift. In the enclosed letter, Bohr wrote, "It is the only thing I have to send home; but I do not believe that it would be very easy to find anything better ... I even think it is one of the most delightful things I have ever read." Bohr enjoyed Kierkegaard's language and literary style, but mentioned that he had some disagreement with Kierkegaard's philosophy.Some of Bohr's biographers suggested that this disagreement stemmed from Kierkegaard's advocacy of Christianity, while Bohr was an atheist.

There has been some dispute over the extent to which Kierkegaard influenced Bohr's philosophy and science. David Favrholdt argued that Kierkegaard had minimal influence over Bohr's work, taking Bohr's statement about disagreeing with Kierkegaard at face value,while Jan Faye argued that one can disagree with the content of a theory while accepting its general premises and structure.

Manhattan Project
In September 1943, word reached Bohr and his brother Harald that the Nazis considered their family to be Jewish, since their mother, Ellen Adler Bohr, had been a Jew, and that they were therefore in danger of being arrested. The Danish resistance helped Bohr and his wife escape by sea to Sweden on 29 September.The next day, Bohr persuaded King Gustaf V of Sweden to make public Sweden's willingness to provide asylum to Jewish refugees. On 2 October 1943, Swedish radio broadcast that Sweden was ready to offer asylum, and the mass rescue of the Danish Jews by their countrymen followed swiftly thereafter. Some historians claim that Bohr's actions led directly to the mass rescue, while others say that, though Bohr did all that he could for his countrymen, his actions were not a decisive influence on the wider events.Eventually, over 7,000 Danish Jews escaped to Sweden.

Accolades
Bohr received numerous honours and accolades. In addition to the Nobel Prize, he received the Hughes Medal in 1921, the Matteucci Medal in 1923,the Franklin Medal in 1926,the Copley Medal in 1938, the Order of the Elephant in 1947, the Atoms for Peace Award in 1957 and the Sonning Prize in 1961.In 1923 he became foreign member of the Royal Netherlands Academy of Arts and Sciences.The Bohr model's semicentennial was commemorated in Denmark on 21 November 1963 with a postage stamp depicting Bohr, the hydrogen atom and the formula for the difference of any two hydrogen energy levels: h\nu = \epsilon_{2} - \epsilon_{1}\,. Several other countries have also issued postage stamps depicting Bohr.In 1997, the Danish National Bank began circulating the 500-krone banknote with the portrait of Bohr smoking a pipe.An asteroid, 3948 Bohr, was named after him,as was the Bohr lunar crater,and bohrium, the chemical element with atomic number 107.
Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment

0 comments:

Post a Comment

Twitter Updates

Get In Touch

Flickr Photostream