GOOGLE ADS

Galileo Galilei

Galileo Galilei

Galileo Galilei
Galileo Galilei (Italian pronunciation:15 February 1564– 8 January 1642), was an Italian astronomer, physicist, engineer, philosopher, and mathematician who played a major role in the scientific revolution during the Renaissance. Galileo has been called the "father of observational astronomy",the "father of modern physics", and the "father of science". His contributions to observational astronomy include the telescopic confirmation of the phases of Venus, the discovery of the four largest satellites of Jupiter (named the Galilean moons in his honour), and the observation and analysis of sunspots. Galileo also worked in applied science and technology, inventing an improved military compass and other instruments.

Galileo's championing of heliocentrism and Copernicanism was controversial within his lifetime, when most subscribed to either geocentrism or the Tychonic system.He met with opposition from astronomers, who doubted heliocentrism due to the absence of an observed stellar parallax.The matter was investigated by the Roman Inquisition in 1615, and they concluded that it could only be supported as a possibility, not as an established fact.Galileo later defended his views in Dialogue Concerning the Two Chief World Systems, which appeared to attack Pope Urban VIII and thus alienated him and the Jesuits, who had both supported Galileo up until this point. He was tried by the Inquisition, found "vehemently suspect of heresy", forced to recant, and spent the rest of his life under house arrest.It was while Galileo was under house arrest that he wrote one of his finest works, Two New Sciences. Here he summarized the work he had done some forty years earlier, on the two sciences now called kinematics and strength of materials.

Galileo was born in Pisa (then part of the Duchy of Florence), Italy, in 1564,the first of six children of Vincenzo Galilei, a famous lutenist, composer, and music theorist, and Giulia Ammannati. Galileo became an accomplished lutenist himself and would have learned early from his father a scepticism for established authority,the value of well-measured or quantified experimentation, an appreciation for a periodic or musical measure of time or rhythm, as well as the results expected from a combination of mathematics and experiment.

Three of Galileo's five siblings survived infancy. The youngest, Michelangelo (or Michelagnolo), also became a noted lutenist and composer although he contributed to financial burdens during Galileo's young adulthood. Michelangelo was unable to contribute his fair share of their father's promised dowries to their brothers-in-law, who would later attempt to seek legal remedies for payments due. Michelangelo would also occasionally have to borrow funds from Galileo to support his musical endeavours and excursions. These financial burdens may have contributed to Galileo's early fire to develop inventions that would bring him additional income. When Galileo Galilei was eight, his family moved to Florence, but he was left with Jacopo Borghini for two years. He then was educated in the Camaldolese Monastery at Vallombrosa, 35 km southeast of Florence.

Career as a scientist
Although Galileo seriously considered the priesthood as a young man, at his father's urging he instead enrolled at the University of Pisa for a medical degree.In 1581, when he was studying medicine, he noticed a swinging chandelier, which air currents shifted about to swing in larger and smaller arcs. To him it seemed, by comparison with his heartbeat, that the chandelier took the same amount of time to swing back and forth, no matter how far it was swinging. When he returned home, he set up two pendulums of equal length and swung one with a large sweep and the other with a small sweep and found that they kept time together. It was not until Christiaan Huygens almost one hundred years later that the tautochrone nature of a swinging pendulum was used to create an accurate timepiece.Up to this point, Galileo had deliberately been kept away from mathematics, since a physician earned a higher income than a mathematician. However, after accidentally attending a lecture on geometry, he talked his reluctant father into letting him study mathematics and natural philosophy instead of medicine.He created a thermoscope, a forerunner of the thermometer, and in 1586 published a small book on the design of a hydrostatic balance he had invented (which first brought him to the attention of the scholarly world). Galileo also studied disegno, a term encompassing fine art, and in 1588 obtained the position of instructor in the Accademia delle Arti del Disegno in Florence, teaching perspective and chiaroscuro. Being inspired by the artistic tradition of the city and the works of the Renaissance artists, Galileo acquired an aesthetic mentality. While a young teacher at the Accademia, he began a lifelong friendship with the Florentine painter Cigoli, who included Galileo's lunar observations in one of his paintings.

In 1589, he was appointed to the chair of mathematics in Pisa. In 1591, his father died, and he was entrusted with the care of his younger brother Michelagnolo. In 1592, he moved to the University of Padua where he taught geometry, mechanics, and astronomy until 1610.During this period, Galileo made significant discoveries in both pure fundamental science (for example, kinematics of motion and astronomy) as well as practical applied science (for example, strength of materials and pioneering the telescope). His multiple interests included the study of astrology, which at the time was a discipline tied to the studies of mathematics and astronomy.

Galileo, Kepler and theories of tides
Cardinal Bellarmine had written in 1615 that the Copernican system could not be defended without "a true physical demonstration that the sun does not circle the earth but the earth circles the sun".Galileo considered his theory of the tides to provide the required physical proof of the motion of the earth. This theory was so important to him that he originally intended to entitle his Dialogue on the Two Chief World Systems the Dialogue on the Ebb and Flow of the Sea.The reference to tides was removed from the title by order of the Inquisition.

For Galileo, the tides were caused by the sloshing back and forth of water in the seas as a point on the Earth's surface sped up and slowed down because of the Earth's rotation on its axis and revolution around the Sun. He circulated his first account of the tides in 1616, addressed to Cardinal Orsini.His theory gave the first insight into the importance of the shapes of ocean basins in the size and timing of tides; he correctly accounted, for instance, for the negligible tides halfway along the Adriatic Sea compared to those at the ends. As a general account of the cause of tides, however, his theory was a failure.

If this theory were correct, there would be only one high tide per day. Galileo and his contemporaries were aware of this inadequacy because there are two daily high tides at Venice instead of one, about twelve hours apart. Galileo dismissed this anomaly as the result of several secondary causes including the shape of the sea, its depth, and other factors.Against the assertion that Galileo was deceptive in making these arguments, Albert Einstein expressed the opinion that Galileo developed his "fascinating arguments" and accepted them uncritically out of a desire for physical proof of the motion of the Earth.Galileo dismissed the idea, held by his contemporary Johannes Kepler, that the moon caused the tides.He also refused to accept Kepler's elliptical orbits of the planets,considering the circle the "perfect" shape for planetary orbits.

Scientific methods
Galileo made original contributions to the science of motion through an innovative combination of experiment and mathematics.More typical of science at the time were the qualitative studies of William Gilbert, on magnetism and electricity. Galileo's father, Vincenzo Galilei, a lutenist and music theorist, had performed experiments establishing perhaps the oldest known non-linear relation in physics: for a stretched string, the pitch varies as the square root of the tension.These observations lay within the framework of the Pythagorean tradition of music, well-known to instrument makers, which included the fact that subdividing a string by a whole number produces a harmonious scale. Thus, a limited amount of mathematics had long related music and physical science, and young Galileo could see his own father's observations expand on that tradition.

Galileo was one of the first modern thinkers to clearly state that the laws of nature are mathematical. In The Assayer he wrote "Philosophy is written in this grand book, the universe. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures;...." His mathematical analyses are a further development of a tradition employed by late scholastic natural philosophers, which Galileo learned when he studied philosophy.His work marked another step towards the eventual separation of science from both philosophy and religion; a major development in human thought. He was often willing to change his views in accordance with observation. In order to perform his experiments, Galileo had to set up standards of length and time, so that measurements made on different days and in different laboratories could be compared in a reproducible fashion. This provided a reliable foundation on which to confirm mathematical laws using inductive reasoning.

Galileo showed a modern appreciation for the proper relationship between mathematics, theoretical physics, and experimental physics. He understood the parabola, both in terms of conic sections and in terms of the ordinate (y) varying as the square of the abscissa (x). Galilei further asserted that the parabola was the theoretically ideal trajectory of a uniformly accelerated projectile in the absence of friction and other disturbances. He conceded that there are limits to the validity of this theory, noting on theoretical grounds that a projectile trajectory of a size comparable to that of the Earth could not possibly be a parabola,but he nevertheless maintained that for distances up to the range of the artillery of his day, the deviation of a projectile's trajectory from a parabola would be only very slight.

Astronomy
The phases of Venus, observed by Galileo in 1610
Based only on uncertain descriptions of the first practical telescope which Hans Lippershey tried to patent in the Netherlands in 1608, Galileo, in the following year, made a telescope with about 3x magnification. He later made improved versions with up to about 30x magnification. With a Galilean telescope, the observer could see magnified, upright images on the earth—it was what is commonly known as a terrestrial telescope or a spyglass. He could also use it to observe the sky; for a time he was one of those who could construct telescopes good enough for that purpose. On 25 August 1609, he demonstrated one of his early telescopes, with a magnification of about 8 or 9, to Venetian lawmakers. His telescopes were also a profitable sideline for Galileo, who sold them to merchants who found them useful both at sea and as items of trade. He published his initial telescopic astronomical observations in March 1610 in a brief treatise entitled Sidereus Nuncius (Starry Messenger).

Jupiter
On 7 January 1610, Galileo observed with his telescope what he described at the time as "three fixed stars, totally invisible by their smallness", all close to Jupiter, and lying on a straight line through it. Observations on subsequent nights showed that the positions of these "stars" relative to Jupiter were changing in a way that would have been inexplicable if they had really been fixed stars. On 10 January, Galileo noted that one of them had disappeared, an observation which he attributed to its being hidden behind Jupiter. Within a few days, he concluded that they were orbiting Jupiter:he had discovered three of Jupiter's four largest satellites (moons). He discovered the fourth on 13 January. Galileo named the group of four the Medicean stars, in honour of his future patron, Cosimo II de' Medici, Grand Duke of Tuscany, and Cosimo's three brothers.Later astronomers, however, renamed them Galilean satellites in honour of their discoverer. These satellites are now called Io, Europa, Ganymede, and Callisto.

His observations of the satellites of Jupiter caused a revolution in astronomy: a planet with smaller planets orbiting it did not conform to the principles of Aristotelian cosmology, which held that all heavenly bodies should circle the Earth,and many astronomers and philosophers initially refused to believe that Galileo could have discovered such a thing.His observations were confirmed by the observatory of Christopher Clavius and he received a hero's welcome when he visited Rome in 1611. Galileo continued to observe the satellites over the next eighteen months, and by mid-1611, he had obtained remarkably accurate estimates for their periods—a feat which Kepler had believed impossible.

Venus, Saturn, and Neptune
From September 1610, Galileo observed that Venus exhibited a full set of phases similar to that of the Moon. The heliocentric model of the solar system developed by Nicolaus Copernicus predicted that all phases would be visible since the orbit of Venus around the Sun would cause its illuminated hemisphere to face the Earth when it was on the opposite side of the Sun and to face away from the Earth when it was on the Earth-side of the Sun. On the other hand, in Ptolemy's geocentric model it was impossible for any of the planets' orbits to intersect the spherical shell carrying the Sun. Traditionally the orbit of Venus was placed entirely on the near side of the Sun, where it could exhibit only crescent and new phases. It was, however, also possible to place it entirely on the far side of the Sun, where it could exhibit only gibbous and full phases. After Galileo's telescopic observations of the crescent, gibbous and full phases of Venus, therefore, this Ptolemaic model became untenable. Thus in the early 17th century as a result of his discovery the great majority of astronomers converted to one of the various geo-heliocentric planetary models,such as the Tychonic, Capellan and Extended Capellan models,each either with or without a daily rotating Earth. These all had the virtue of explaining the phases of Venus without the vice of the 'refutation' of full heliocentrism's prediction of stellar parallax. Galileo's discovery of the phases of Venus was thus arguably his most empirically practically influential contribution to the two-stage transition from full geocentrism to full heliocentrism via geo-heliocentrism.

Galileo observed the planet Saturn, and at first mistook its rings for planets, thinking it was a three-bodied system. When he observed the planet later, Saturn's rings were directly oriented at Earth, causing him to think that two of the bodies had disappeared. The rings reappeared when he observed the planet in 1616, further confusing him. Galileo also observed the planet Neptune in 1612. It appears in his notebooks as one of many unremarkable dim stars. He did not realise that it was a planet, but he did note its motion relative to the stars before losing track of it.

Sunspots
Galileo was one of the first Europeans to observe sunspots, although Kepler had unwittingly observed one in 1607, but mistook it for a transit of Mercury. Hea lso reinterpreted a sunspot observation from the time of Charlemagne, which formerly had been attributed (impossibly) to a transit of Mercury. The very existence of sunspots showed another difficulty with the unchanging perfection of the heavens as posited in orthodox Aristotelian celestial physics. And the annual variations in sunspots' motions, discovered by Francesco Sizzi and others in 1612–1613,provided a powerful argument against both the Ptolemaic system and the geoheliocentric system of Tycho Brahe.A dispute over priority in the discovery of sunspots, and in their interpretation, led Galileo to a long and bitter feud with the Jesuit Christoph Scheiner.

In fact, there is little doubt that both of them were beaten by David Fabricius and his son Johannes. Scheiner quickly adopted Kepler's 1615 proposal of the modern telescope design, which gave larger magnification at the cost of inverted images; Galileo apparently never changed to Kepler's design.

Moon
Prior to Galileo's construction of his version of a telescope, Thomas Harriot, an English mathematician and explorer, had already used what he dubbed a "perspective tube" to observe the moon. Reporting his observations, Harriot noted only "strange spottednesse" in the waning of the crescent, but was ignorant to the cause. Galileo, due in part to his artistic training and the knowledge of chiaroscuro,had understood the patterns of light and shadow were in fact topographical markers. While not being the only one to observe the moon through a telescope, Galileo was the first to deduce the cause of the uneven waning as light occlusion from lunar mountains and craters. In his study he also made topographical charts, estimating the heights of the mountains. The moon was not what was long thought to have been a translucent and perfect sphere, as Aristotle claimed, and hardly the first "planet", an "eternal pearl to magnificently ascend into the heavenly empyrian", as put forth by Dante.

Milky Way and stars
In the Starry Messenger, Galileo reported that stars appeared as mere blazes of light, essentially unaltered in appearance by the telescope, and contrasted them to planets, which the telescope revealed to be discs. But shortly thereafter, in his letters on sunspots, he reported that the telescope revealed the shapes of both stars and planets to be "quite round". From that point forward, he continued to report that telescopes showed the roundness of stars, and that stars seen through the telescope measured a few seconds of arc in diameter.He also devised a method for measuring the apparent size of a star without a telescope. As described in his Dialogue Concerning the two Chief World Systems, his method was to hang a thin rope in his line of sight to the star and measure the maximum distance from which it would wholly obscure the star. From his measurements of this distance and of the width of the rope, he could calculate the angle subtended by the star at his viewing point.In his Dialogue, he reported that he had found the apparent diameter of a star of first magnitude to be no more than 5 arcseconds, and that of one of sixth magnitude to be about 5/6 arcseconds. Like most astronomers of his day, Galileo did not recognise that the apparent sizes of stars that he measured were spurious, caused by diffraction and atmospheric distortion (see seeing disk or Airy disk), and did not represent the true sizes of stars. However, Galileo's values were much smaller than previous estimates of the apparent sizes of the brightest stars, such as those made by Tycho Brahe (see Magnitude) and enabled Galileo to counter anti-Copernican arguments such as those made by Tycho that these stars would have to be absurdly large for their annual parallaxes to be undetectable.Other astronomers such as Simon Marius, Giovanni Battista Riccioli, and Martinus Hortensius made similar measurements of stars, and Marius and Riccioli concluded the smaller sizes were not small enough to answer Tycho's argument.

Engineering
Galileo made a number of contributions to what is now known as engineering, as distinct from pure physics. This is not the same distinction as made by Aristotle, who would have considered all Galileo's physics as techne or useful knowledge, as opposed to episteme, or philosophical investigation into the causes of things. Between 1595 and 1598, Galileo devised and improved a Geometric and Military Compass suitable for use by gunners and surveyors. This expanded on earlier instruments designed by Niccolò Tartaglia and Guidobaldo del Monte. For gunners, it offered, in addition to a new and safer way of elevating cannons accurately, a way of quickly computing the charge of gunpowder for cannonballs of different sizes and materials. As a geometric instrument, it enabled the construction of any regular polygon, computation of the area of any polygon or circular sector, and a variety of other calculations. Under Galileo's direction, instrument maker Marc'Antonio Mazzoleni produced more than 100 of these compasses, which Galileo sold (along with an instruction manual he wrote) for 50 lire and offered a course of instruction in the use of the compasses for 120 lire.

In 1609, Galileo was, along with Englishman Thomas Harriot and others, among the first to use a refracting telescope as an instrument to observe stars, planets or moons. The name "telescope" was coined for Galileo's instrument by a Greek mathematician, Giovanni Demisiani,at a banquet held in 1611 by Prince Federico Cesi to make Galileo a member of his Accademia dei Lincei.The name was derived from the Greek tele = 'far' and skopein = 'to look or see'. In 1610, he used a telescope at close range to magnify the parts of insects. By 1624 Galileo had used a compound microscope. He gave one of these instruments to Cardinal Zollern in May of that year for presentation to the Duke of Bavaria,and in September he sent another to Prince Cesi.The Linceans played a role again in naming the "microscope" a year later when fellow academy member Giovanni Faber coined the word for Galileo's invention from the Greek words µ????? (micron) meaning "small", and s??pe?? (skopein) meaning "to look at". The word was meant to be analogous with "telescope".Illustrations of insects made using one of Galileo's microscopes, and published in 1625, appear to have been the first clear documentation of the use of a compound microscope.

In 1612, having determined the orbital periods of Jupiter's satellites, Galileo proposed that with sufficiently accurate knowledge of their orbits, one could use their positions as a universal clock, and this would make possible the determination of longitude. He worked on this problem from time to time during the remainder of his life; but the practical problems were severe. The method was first successfully applied by Giovanni Domenico Cassini in 1681 and was later used extensively for large land surveys; this method, for example, was used to survey France, and later by Zebulon Pike of the midwestern United States in 1806. For sea navigation, where delicate telescopic observations were more difficult, the longitude problem eventually required development of a practical portable marine chronometer, such as that of John Harrison.Late in his life, when totally blind, Galileo designed an escapement mechanism for a pendulum clock (called Galileo's escapement), although no clock using this was built until after the first fully operational pendulum clock was made by Christiaan Huygens in the 1650s.

Physics
Galileo's theoretical and experimental work on the motions of bodies, along with the largely independent work of Kepler and René Descartes, was a precursor of the classical mechanics developed by Sir Isaac Newton. Galileo conducted several experiments with pendulums. It is popularly believed (thanks to the biography by Vincenzo Viviani) that these began by watching the swings of the bronze chandelier in the cathedral of Pisa, using his pulse as a timer. Later experiments are described in his Two New Sciences. Galileo claimed that a simple pendulum is isochronous, i.e. that its swings always take the same amount of time, independently of the amplitude. In fact, this is only approximately true,as was discovered by Christiaan Huygens. Galileo also found that the square of the period varies directly with the length of the pendulum. Galileo's son, Vincenzo, sketched a clock based on his father's theories in 1642. The clock was never built and, because of the large swings required by its verge escapement, would have been a poor timekeeper.

Galileo is lesser known for, yet still credited with, being one of the first to understand sound frequency. By scraping a chisel at different speeds, he linked the pitch of the sound produced to the spacing of the chisel's skips, a measure of frequency. In 1638, Galileo described an experimental method to measure the speed of light by arranging that two observers, each having lanterns equipped with shutters, observe each other's lanterns at some distance. The first observer opens the shutter of his lamp, and, the second, upon seeing the light, immediately opens the shutter of his own lantern. The time between the first observer's opening his shutter and seeing the light from the second observer's lamp indicates the time it takes light to travel back and forth between the two observers. Galileo reported that when he tried this at a distance of less than a mile, he was unable to determine whether or not the light appeared instantaneously.Sometime between Galileo's death and 1667, the members of the Florentine Accademia del Cimento repeated the experiment over a distance of about a mile and obtained a similarly inconclusive result.We now know that the speed of light is far too fast to be measured by such methods (with human shutter-openers on Earth).

Galileo put forward the basic principle of relativity, that the laws of physics are the same in any system that is moving at a constant speed in a straight line, regardless of its particular speed or direction. Hence, there is no absolute motion or absolute rest. This principle provided the basic framework for Newton's laws of motion and is central to Einstein's special theory of relativity.

Falling bodies
A biography by Galileo's pupil Vincenzo Viviani stated that Galileo had dropped balls of the same material, but different masses, from the Leaning Tower of Pisa to demonstrate that their time of descent was independent of their mass.This was contrary to what Aristotle had taught: that heavy objects fall faster than lighter ones, in direct proportion to weight.While this story has been retold in popular accounts, there is no account by Galileo himself of such an experiment, and it is generally accepted by historians that it was at most a thought experiment which did not actually take place.An exception is Drake,who argues that the experiment did take place, more or less as Viviani described it. The experiment described was actually performed by Simon Stevin (commonly known as Stevinus),although the building used was actually the church tower in Delft in 1586.However most of his experiments with falling bodies were carried out using inclined planes where both the issues of timing and wind resistance were much reduced.

In his 1638 Discorsi, Galileo's character Salviati, widely regarded as Galileo's spokesman, held that all unequal weights would fall with the same finite speed in a vacuum. But this had previously been proposed by Lucretius and Simon Stevin.Cristiano Banti's Salviati also held it could be experimentally demonstrated by the comparison of pendulum motions in air with bobs of lead and of cork which had different weight but which were otherwise similar.

Galileo proposed that a falling body would fall with a uniform acceleration, as long as the resistance of the medium through which it was falling remained negligible, or in the limiting case of its falling through a vacuum. He also derived the correct kinematical law for the distance travelled during a uniform acceleration starting from rest—namely, that it is proportional to the square of the elapsed time ( d ? t 2 ). Prior to Galileo, Nicole Oresme, in the 14th century, had derived the times-squared law for uniformly accelerated change,and Domingo de Soto had suggested in the 16th century that bodies falling through a homogeneous medium would be uniformly accelerated. Galileo expressed the time-squared law using geometrical constructions and mathematically precise words, adhering to the standards of the day. (It remained for others to re-express the law in algebraic terms).

He also concluded that objects retain their velocity unless a force—often friction—acts upon them, refuting the generally accepted Aristotelian hypothesis that objects "naturally" slow down and stop unless a force acts upon them. Philosophical ideas relating to inertia had been proposed by John Philoponus centuries earlier, as had Jean Buridan, and according to Joseph Needham, Mo Tzu had proposed it centuries before either of them; nevertheless, Galileo was the first to express it mathematically, verify it experimentally, and introduce the idea of frictional force, the key breakthrough in validating the concept. Galileo's Principle of Inertia stated: "A body moving on a level surface will continue in the same direction at constant speed unless disturbed." This principle was incorporated into Newton's laws of motion (first law).
Share on Google Plus

About Unknown

This is a short description in the author block about the author. You edit it by entering text in the "Biographical Info" field in the user admin panel.
    Blogger Comment

0 comments:

Post a Comment

Twitter Updates

Get In Touch

Flickr Photostream